Your Newest Supplier in the Analytical Chemistry Market...

Emission Tail of Indium Phosphide Quantum Dots Investigated using the FS5 Spectrofluorometer

Semiconductor quantum dots (QDs) have unique tuneable photoluminescence properties which lend them to a range of important technological applications including solid-state lighting, displays, photovoltaics, and biomedical imaging. Indium phosphide (InP) QDs have attracted significant interest as an environmentally friendly and non-toxic alternative to traditional heavy metal based QDs containing cadmium and lead.

Metal Organic Framework as a Ratiometric Fluorescence Sensor for Hypochlorite and Ascorbic Acid

Researchers in Fujian, China, led by Rong Cao and Zu-Jin Lin, have developed a new method for sensing ClO- employing fluorescence spectroscopy and novel metal organic frameworks. The authors used an Edinburgh Instruments FS5 Spectrofluorometer to characterize and optimise the sensor’s response towards ClO- . They then employed this sensor to detect ascorbic acid, an essential nutrient for the human body.

Optimisation of SERS for Glucose Sensing

Surfaced enhanced Raman scattering (SERS) is an enhancement technique in which nanoparticles are used to provide Raman intensity enhancement. In this application note the optimisation of gold nanoparticles are investigated for the development of a SERS glucose sensor.

Natural Gas Analyser Apilkasyonları

Natural Gas Analysers are available with various configurations on CompactGC. Optional channels are offered for low ppm H2 or sulphur components. Calorific Value / BTU calculation is also included.

Identification of Microplastics Using Raman Spectroscopy

Microplastic pollution is a growing environmental issue. Identification is crucial for assessing their risk to the environment, wildlife, and mankind. Raman microscopy is a great tool for the identification of small microplastics. This application note explores how the RM5 Raman Microscope combined with the KnowItAll Raman database can be used to identify polymers commonly found in the Earths aquatic systems.

Raman Spectroscopy as a Tool for Studying Polymer Phase Transitions

Semicrystalline polymers are the largest group of commercially produced plastics. Heating and cooling of these polymers between phase transitions is used industrially to shape polymers into their final product. In this application note the RMS1000, with a heated stage, is used to observe phase transitions in two polymers; polyethylene, and nylon-6.

Discrimination of Cooking Oils Using Raman Spectroscopy

Cooking oils are one of the main components of the human diet.
Adulteration of extra virgin olive oil with cheaper oils is a common problem in food fraud.
This application note highlights how Raman spectroscopy in combination with chemometrics can be used to identify cooking oil adulteration.